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Abstract

A sequence of simulations was carried out to aid in the

diagnosis and interpretation of equating differences found

between random and matched (nonrandom) samples for four commonly

used equating procedures: Tucker linear observed-score

equating, Levine equally reliable linear observed-score

equating, Equipercentile curvilinear observed-score equating,

and IRT curvilinear true-score equating. The results support

the prediction based on theoretical grounds that observed-score

equating methods are more affected by sample variation than are

true-score equating methods. These results further suggest that

matching equating samples on the basis of fallible measures of

ability may not be advisable for any conventional equating

method except the Tucker method. In addition, the results

support a particular hypothesis about IRT equating, suggesting

that the use of matched samples cannot be recommended for this

equating method either.
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Factors Affecting the Sample Invariant Properties of

Linear and Curvilinear Observer1- and True-Score

Equating Procedures

INTRODUCTION

For several decades, psychometricians have discussed and

debated whether or not linear observed-score equating procedures

such as the Tucker equating model (see Angoff, 1971) can provide

invariant results when new and old form samples used in the

equating differ in ability level. Levine (1955) developed a

linear true-score equating model that was deomed to be more

robust to differences in ability level of old and new form

samples than the Tucker method. In the 1980's, IRT true-score

equating (see Lord, 1980) won many advocates because of its

claim to provide sample invariant equating results, provided the

IRT model used fit the data and item parameters were adequately

estimated. In the past few years, a number of studies have been

performed to investigate the sample invariant properties of

linear and IRT equating procedures (for example, Angoff &

Cowell, 1986; Kingston, Leary, & Wightman, 1985; Cook, Eignor, &

Taft, 1988); these studies have been reviewed and contrasted in

a recent paper by Cook and Petersen (1987).
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Lawrence and Dorans (1988) recently provided information

addressing the sample invariant properties of Tucker and Levine

linear equating and Equipercentile through an anchor test

(Design V in Angoff, 1971) and three parameter logistic (3-PL)

model IRT curvilinear equating in the context of equating the

Scholastic Aptitude Test (SAT). Because the study to be

described in this paper may be viewed in certain ways as an

extension of the Lawrence and Dorans study, some of the details

of the standard SAT data collection design and the matching

process employed by Lawrence and Dorans in their study will be

reviewed before results of the Lawrence and Dorans study will be

discussed.

Figure 1 depicts the basic SAT equating data collection

design, which essentially represents an equating design linking

the new form, labelled NEW, to two old forms OLD1 and OLD2. The

specific old forms to be useu n the equating are established in

the SAT braiding plan (Angoff, 1974); in general, the

populations taking forms NEW and OLD1 will be populations of

similar ability (data for form OLD1 will have been collected at

the same administration during a previous year as form NEW),

while the group of examinees taking form OLD2 will represent

either a more or less able candidate population (data for form
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OLD2 will have been collected at a different administration

during a previous year than form NEW). Form NEW is linked to

OLD1 via one anchor test (EQ1) and to OLD2 via another anchor

,test (EQ2). Typically, the average of the anchor equatings to

the two old forms is taken as the operational conversion for the

new form.

In the Lawrence and Dorans (1988) study, the authors

focused on the equating of NEW to form OLD2, and in addition to

performing the usual linear, Equipercentile through an anchor

test, and 3-PL IRT equatings based on new and old form random

samples that differ considerably in ability, matched sample

equatings were also performed. In the matched sample equating

of NEW to OLD2, the sample taking OLD2 (sample 4 in Figure 1) is

chosen in a non-random fashion so that the old form distribution

of scores on the anchor test (EQ2) matches the observed-score

distribution of the new form equating sample (sample 2). Thus,

while the observed-score distribution for the new form sample is

the naturally occurring distribution, the observed-score

distribution for the old form sample is altered under matched

sample conditions to be similar to that of the new form sample.

This matching procedure is seen as a means for controlling for

the possible effects of ability level differences on equating

BEST COPY AVAILABLE
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results. Lawrence and Dorans were then able to compare the

random sample and matched sample equating results to determine

which linear and curvilinear equating procedures provided the

most and least invariant results.

Insert Figure 1 about here

Lawrence and Dorans (1988) studied and compared random and

matched sample linear (Tucker and Levine), Equipercentile

through an anchor test, and 3-PL IRT equatings (of NEW to OLD2)

for nine forms of SAT-Mathematical and six forms of SAT-Verbal.

The equating results, particularly scaled score means produced

by the equating methods,

equating method was less

revealed that the IRT

robust to differences

than expected, i.e., equating results for this

true-score

in group ability

method differed

between the matched and unmatched (random) conditions. The

Levine and Equipercentile through an anchor test equating

results also differed considerably in certain equatings studied

across the matched and random conditions. Interestingly, the

Tucker observed-score equatings appeared more invariant across

the matched and unmatched samples than any of the other methods.

This was particularly true for the SAT-Mathematical equatings
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studied, where there was little to no variation in scaled score

means produced by the Tucker equating across the matched and

random conditions. For SAT-Verbal, some variation in scaled

score means resulting from the Tucker equatings was observed,

but the sizes of the differences between the matched and random

conditions was always less for Tucker than for other procedures.

Further, while the four equating procedures frequently produced

differing scaled score means under the random sample conditions,

use of the anchor test as a direct selection variable for

matching purposes produced a convergence of scaled score means

across the four equating procedures. Lawrence and Dorans

offered possible explanations for differences in equating

results for all the procedures studied. Certain of these

explanations, particularly the explanation for the IRT results,

will be discussed later in this paper.

Consistency of equating results, and particularly scaled

score means, across random and matched sample conditions was

used as the criterion in the Lawrence and Dorans study. One

potential problem with using consistency as the criterion is

that consistent equating results may be disparate from the

"true" equating results, were they known. In other words, the

consistent Tucker equating results might have been more
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disparate from the "true" equating results in the Lawrence and

Dorans study than the inconsistent Levine or IRT equatings.

Knowledge of "true" equating results suggests the need for a

simulation study.

One recent simulation study supplied some useful results

when considering the lack of invariance of the 3-PL IRT

equatings. Stocking and Eignor (1986) showed that differences

around one standard deviation between IRT equating sample mean

abilities can have substantial effect (a five scaled score point

difference) on the SAT mean scaled score when compared to

results for samples not differing in mean ability and to "true"

results. However, most of the random and matched sample

equatings studied by Lawrence and Dorans (1988) showed as great

or greater differences in score means as the Stocking and Eignor

(1986) study although there were smaller differences in sample

mean abilities. Hence the differences or lack of invariance of

the 3-PL IRT equating results in the Lawrence and Dorans (1988)

study suggests the design of a simulation study where more

variables can be studied than simply ability level differences.

The goal of the present study was to develop a general

simulation model and then perform a sequence of simulations and

subsequent equatings based on the model that would address

11.
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specific issues in the application of both conventional and IRT-

based equating methodologies, many of which were brought out in

the Lawrence and Dorans (1988) study. More specifically, the

purpose of the study was to investigate, using a sequence of

simulations, the impact on four equating procedures of: 1)

differences in abilities of samples used for equating, both when

each examinee has complete data (an unrealistic setting) and

also in the presence of missing data (a more realistic setting);

2) subsequent matching of samples on an infallible measure of

ability (an unrealistic setting); and 3) subsequent matching of

samples on a fallible measure of ability (a more realistic

setting).

THE STUDY DESIGN

The Definition of True Item and Person Parameters

For the sequence of simulations described in this paper,

true item and person parameters are required. They could, of

course, be invented. It is more realistic, however, to use

existing parameter estimates, but treat them as if they were

true. It seems reasonable to assume that such a definition of

truth captures at least some of the predominant features of

actual data, such as the spread of abilities and item

difficulties. For this purpose, the results of a LOGIST
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calibration (Wingersky, Barton, & Lord, 1982) of a single 85-

item SAT-Verbal test form (administered in two separately timed

sections) plus a 45-item associated anchor test or equating

section were used as the true item parameters. Descriptive

statistics for these true item parameters are shown in Table 1.

Insert Table 1 about here

True person parameters were defined to be the ability

estimates obtained when a sample of N 3018 real examinees took

the Verbal form and its associated equating section. Two

population distributions of true ability were definei for this

study. The first was defined to be exactly like the

distribution of true person parameters, with mean true ability

of -.02 and standard deviation of true ability equal to 1.07. A

second population was defined to be less able, with mean true

ability of -.35, and the same standard deviation.

For the purposes of this study, a total of six independent

samples of size N 3000 were drawn, as follows:
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Sample
Drawn from
Population

Sample Mean
Ability

Sample Standard
Deviation of Ability

1 1 -.01 1.06

2 1 -.03 1.08

3 1 -.02 1.06

4 1 .01 1.08

5 2 -.37 1.06

6
1

2 -.06 1.08

The Generation of Complete Response Data

Two types of response data were generated for each

simulated examinee (simulee). In this section, we discuss the

generation of complete response strings; in a subsequent

section, we describe the incorporation of missing data.

To generate responses to an item for a simulee, the

simulee's true ability and the item's true 3-PL parameters arc

used to generate the model predicted probability of a correct

response (see Lord, 1980). A random number is then selected

from a uniform [0,1] distribution and compared to this model

probability. If the random number is less than the modeled

probability, the simulee is assigned a correct response to the

item; if the random number is greater than the modeled

probability, the simulee is assigned an incorrect response.

1Sample 6 was matched to Sample 2 using the observed
formula-score distribution of Sample 2 on the anchor test.
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This response string may be referred to as the true model-

generated response string. It represents what the model says

about examinee behavior for every item.

Models for Missing Response Data

Real examinees rarely have complete data. Data can be

absent from a response string for at least two reasons. The

examinee may not have had time to examine all test items, and

therefore fails to respoLd to a block of items at the end of a

test. This type of missing data is referred to as 'not-

reached'. A second type of missing data occurs, particularly in

formula scored tests, where an examinee may decide to omit an

item because the examinee thinks that she/he can only respoad at

random. For whatever reason responses are missing, it seems

most likely that the existence and patterns of missing data in

response strings may be a function of the ability the test is

designed to measure. This clearly violates the assumptions of

the 3-PL model, and will almost certainly have some effect on

calibration and equating results. It seems reasonable to

attempt to incorporate this type of examinee behavior as one of

the aspects to be studied in these simulations.

The mathematical modeling of missing responses is a complex

and difficult process involving assumptions about the behavior
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of examinees that may be difficult to test. This is clearly

beyond the scope of the present paper. It is possible, however,

to develop empirically-based models of missing data that make up

for what they lack in generality by their close resemblance to

real SAT data. It is important to note that, because the models

proposed below are empirically based, they favor no particular

treatment of missing data as incorporated into specific

calibration procedures.

An Empiricall,y-Based Model of Speededness

We wish to model speededness as a function of ability. To

do this we need the actual item responses from each real

examinee included in the calibration that produced our true item

and person parameters. We can call these data the true response

strings. We also need the true ability for each real examinee.

Using the true response strings and true ability, we build a

model of speededness only once, in advance of the simulations,

for each separately timed test section. For each quintile of

the distribution of true ability, we determine the cumulative

distribution of the number of items reached for all examinees in

the quintile. These conditional distributions will differ by

ability level, and collectively they constitute our empirically-
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based model. To incorporate this model in subsequent

simulations, we proceed as follows:

1) Find the quintile into which a simulee's true ability

falls.

2) Generate a random number between zero and one.

3) In the correct conditional distribution, find the

cumulant that most closely matches the random number.

4) Find the corresponding number of items reached.

5) Assume that subsequent items are not reached for a

simulee, and code 3's (the LOGIST code for not reached items) in

the remainder of the model-generated response string for this

simulee.

Figures 2, 3, and 4 show these empirically-based models

separately for each separately timed section. In each of these

figures, the frequency distribution of true abilities is plotted

upside down; values of these proportional frequencies must be

read from the right-hand vertical scale. This frequency

distribution is divided into quintiles by the dotted vertical

lines. In each figure, a solid vertical line is plotted at the

midpoint of each quintile to serve as the x-axis for the

cumulative conditional distributions, which are plotted

sideways. The conditional distributions for each quintile are
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the cumulative proportions of the individuals falling in that

quintile who reached a specified proportion of the items in that

section. Values for the specified proportion must be read from

the left-hand vertical scale.

Insert Figures 2, 3, 4 about here

Although crude, these figures do demonstrate that this

empirically-based model incorporates the number of items reached

as a function cf ability. For each separately timed section,

there is a noticeable increase in the proportions of individuals

completing more of the test as one looks across the quintiles

from the lowest to the highest quintile.

An Em iricall -Based Model of Omits

We assume the omitting behavior is a function of the

ability to be measured by the test. We also assume an

additional complexity -- that omitting also depends upon whether

an examinee thinks she/he will get an item correct or incorrect.

We need the same data as before, that is, the true response

strinzs and true abilities for real examinees included in the

calibration that produced our true item and person parameters.

We also need additional data, that is, the true model-generated
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response strings for the same examinees. This latter response

string represents what the model predicts for each item for an

examinee.

For each item, we construct two sub-models. The first is

for those individuals whose model-predicted response was

correct; we take this to indicate that the examinee thought

she/he would get the item right. The second is for those

individuals whose model-predicted response was incorrect; we

take this to indicate that the examinee thought she/he would

get the item wrong. For each sub-model, for each quintile of

the distribution of true ability, we compute the proportions of

examinees who omit the item in the true response strings. We

construct these models for each item only once, using our true

item and person parameters, true response strings, and true

model-generated response strings. To incorporate these models

in subsequent simulations, we proceed as follows:

1) For a true simulee ability, determine the model-

generated response.

2) For the corresponding sub-model, find the corresponding

quintile in the correct ability distribution.

3) Generate a random number between zero and one.
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4) If the random number is less than the proportion of

omits observed in the true response string, change the response

in the simulee's model-generated response string to an omit. If

the random number is greater than the proportion, do not change

the response.

The empirically-based models of omitting behavior are shown

f'or a few selected items in Figure 5. There are two plots for

each item -- one for those examinees whose model generated

responses indicated that they would respond incorrectly, and a

second for those examinees whose model generated responses

indicated that they would respond correctly. For each of these

plots, the frequency distribution of true abilities for those

examinees with the appropriate model-generated response is

plotted upside down on the horizontal axis, with vertical bars

marking off the quintiles. Actual values for this frequency

distribution must be read fr()71 the bottom vertical axis. Above

the horizontal axis in each figure, the proportion of

individuals in a quintile whose true response strings indicated

an omit are plotted with a cross at the midpoint of a quintile.

These proportions are to be read from the top vertical axis.
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Insert Figure 5 about here

There is some variation in omitting rates among the items

displayed in Figure 5. Items 15, 55, 95 and 99 are hard items

with more than 1000 omits (33%) in the full sample. Items 1 and

16 are easy items with fewer than 10 omits (.33%) in the full

sample. Items 50 and 91 are items of middle difficulty; the

rates of omitting in the true response strings are moderate.

The following table gives the true parameters for these items.

Item
Number a b c

Number of
Omits in full sample

15 .9 2.4 .18 >1000
55 .4 2.6 .13 >1000
95 1.0 1.4 .25 >1000
99 1.0 2.0 26 >1000
1 .3 -3.7 .12 <10

16 .6 -2.8 .12 <10
50 1.2 .0 .23 538
91 .8 .0 .10 270

Looking at these plots leads to a number of general

conclusions. First, examinees who are modeled to get an item

right tend to omit less frequently than those modeled to get an

item wrong. This trend is most marked for those in the highest

quintile of their respective ability distributions. Second, the

rate of omitting is usually higher for lower ability, regardless
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of the modeled response. This latter trend seems most

consistent for those modeled to answer an item correctly. This

model, then, reflects the two aspects we had hoped to

incorporate, namely that omitting behavior is a function of

ability and also a function of whether an examinee thinks that

she/he will respond correctly.

Ihe Design of the Calibrations and Equatings

The simulated responses from the six samples of simulees to

the test form and equating section were combined into five

concurrent LOGIST runs, each representing an experimental

condition. The design of each LOGIST run was the same, and

patterns in form the usual SAT data collection design presented

in Figure 1.

Total Test or Anchor Test

NEW EQ1 EQ2 OLD1 OLD2

Sample 1
Sample 2 x

Sample 3
Sample Y
(Y-4,5, or 6)

Sample 1 was administered the new form and one anchor test

(EQ1), Sample 2 was administered the new form and another anchor

test (EQ2), Sample 3 was administered the first anchor test

(EQ1) and an old form (OLD1), and a final sample (either Sample

90
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4, 5 or 6) was administered the second anchor test (EQ2) and

another old form (OLD2). All test forms (NEW, OLD1, OLD2) had

identical true parameters, and all anchor tests (EQ1 and EQ2)

had identical true item parameters.

From the item parameter estimates derived from each of the

LOGIST runs or from the observed-score data for the samples used

in the runs, the new form was equated to each old form using the

Tucker, Levine, Equipercentile through an anchor test, and 3-PL

IRT equating methods. The two equatings were also averaged to

produce a final equating. All old forms were placed on the SAT

200 to 800 scaled score metric by the nonlinear equating

originally derived for the SAT-Verbal form that serves as the

source of the true item and person parameters. Projected scaled

score means and standard deviations were computed for each

single equating and each average using a sample of over 90,000

examinees who took that SAT-Verbal form at its initial equating

administration.

The Scaling of Calibration Results

Many of the comparisons made in this study involve the

estimated parameters obtained from separate LOGIST calibrations.

However, each calibration will have results reported on a

different metric, since LOGIST determines the reporting metric
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by standardizing the ability estimates within a calibration.

Therefore, the estimated parameters must all be placed on some

common metric before such comparisons can be achieved.

The metric of the true item and person parameters was

chosen as the common metric within which to compare parameter

estimates. The parameter estimates from each LOGIST calibration

were transformed to this common metric by the characteristic

curve transformation method of Stocking and Lord (1983). The

transformations were based on the parameter estimates from each

calibration and the true parameters for the 130 items (85 test

items plus 45 anchor test items) taken by Sample 1.

The Experimental Conditions

The series of simulations were designed to study five

experimental conditions, shown in the following table, which

contains a letter for each experimental condition:

True Ability Distribution

Equivalent Unequal Equivalent by Matching

Complete data A B

Missing data C D E

The data for all samples in a LOGIST run were either complete

(conditions A and B) or contained missing data (conditions C, D,

and E). The final samples taking EQ2 and OLD2, Samples 4-6,

BEST COPY AVAILABLE
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were drawn in the following fashion. Sample 4 was drawn

randomly from the same population as the other samples

(conditions A and C); Sample 5 was drawn randomly from the lower

ability population (conditions B and D); and Sample 6 was drawn

from the lower ability population to match the distribution of

observed formula scores obtained by Sample 2 on EQ2 (condition

E).

Condition A, Complete Data and Equivalent Samples, is a

benchmark condition in that, while unlikely to be realized in

practice, it represents the best circumstances for any equating

method. Condition B, Complete Data and Unequal Samples,

provides for the exploration of the effects of different sample

abilities while still maincaining the ideal situation of

complete data for all simulees. This condition replicates the

conditions of the Stocking and Eignor (1986) study, described in

the introduction. Condition C, Missing Data and Equivalent

Samples, is a more realistic condition in that samples now

incorporate missing data. In this condition, however, samples

have been chosen to be equivalent on the basis of an infallible

criterion. Condition D, Missing Data and Unequal Samples,

represents what is typically obtained in an SAT equating of NEW

to OLD2 in the absence of any further data manipulation.



Equating Procedures

23

Condition E, Missing Data and Matched Samples, represents the

matching procedure employed in the Lawrence and Dorans (1988)

study; that is, matching samples on the basis of a fallible

criterion in an attempt to achieve the ideal condition of

equivalent samples.

RESULTS AND DISCUSSION

Calibration Results

Tables 2 through 6 contain descriptive statistics for the

parameter estimates from each LOGIST calibration representing an

experimental condition. In each table, the statistics for the

item parameter estimates are given separately by test form or

section. Statistics are also given for both the estimated and

true abilities from each sample of simulees used in the

calibration. These tables will be helpful in understanding some

of the phenomena exhibited in the equating results.

Insert Tables 2, 3, 4, 5, and 6 about here

Equating Results

The focus of this study has been on the effect of the

various experimental conditions on a number of different linear

and curvilinear observed and true-score equating procedures.

2C
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For convenience, we divide the discussion of these equating

results into two parts. In the first part, we examine the

information available from this study relevant to a particular

phenomenon observed by Lawrence and Dorans (1988) in their IRT

equating results. This discussion is focused only on

experimental condition D, Missing Data and Unequal Samples, and

experimental condition E, Missing Data and Matched Samples. In

the second part, we consider the results for all equating

procedures across all experimental conditions.

An Exploration of the Lewis Hypothesis

Lawrence and Dorans (1988) observed that when the "matched"

sample is more able than the "random" sample, i. e., Sample 6 is

more able than Sample 5, the mean estimated item difficulty for

OLD2 is higher when the estimates are obtained from Sample 6

than when obtained from Sample 5. When this is true, it

automatically follows that the mean scaled score for NEW based

on the matched sample calibration is lower than that based on

the random-and-unequal sample calibration.

Charles Lewis (personal. communication to Dorans, 1987)

hypothesized the following circumstances to explain the

difference in mean estimated item difficulties between the

27
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random-and-unequal and matched conditions (experimental

conditions D and E in the context of the current study):

1) Selecting Sample 6 from the same population as Sample 5

(a lower ability population) to match Sample 2 on the basis of

observed scores on EQ2 will produce a sample of higher true

ability than Sample 5, but not as high as the mean true ability

for Sample 2. Given this level of true ability, the Sample 6

simulees will also have somewhat higher than expected observed

scores on EQ2 (relative to Sample 5), corresponding to positive

mean error scores in classical test theory.

2) The items in EQ2 will appear easier for Sample 6 than

for Sample 2 because of the positive errors. LOGIST will try to

reconcile these two sources of information about EQ2 items by

estimating Sample 6 simulees to be more able than they actually

are until the regressions of item score on estimated ability

coincide for the two samples.

3) Items in OLD2 are also responded to by simulees in

Sample 6, and by no other sample. If the simulees in Sample 6

are thought to be more able than they actually are, then their

estimated abilities will be shifted to the right on the ability

metric. The values of the estimated difficulties for items in

OLD2 will be relative to the estimated abilities for Sample 6,
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and since these abilities are shifted to the right, the

estimated difficulties will be also, making these items appear

harder than they actually are, relative to items in other forms.

4) In experimental condition D (Missing Data, Unequal

Samples) of the current study, none of the distortions described

above should occur. Thus the estimated difficulties for EQ2 for

the two LOGIST calibrations should be approximately the same,

while the esd.mated difficulties for the items in OLD2 arising

from the matched sample condition (E) should be systematically

greater than the corresponding difficulties for the random-and-

unequal sample condition (D).

Lawrence and Dorans (1988) presented a table of average

values for estimated item parameters for one of the SAT-

Mathematical forms they studied under both experimental

conditions. As in the case described above, the old form sample

obtained by the matching process was more able than the randomly

selected old form sample. The average difficulty for the old

form affected by the change in sampling is about .08 higher

under the matched sampling condition than under the random

sampling condition, which supports the Lewis hypothesis.

Table 7 presents the same type of information as presented

by Lawrence and Dorans, but for the current simulation.

29
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However, in addition to the average values of item parameter

estimates for the random-and-unequal case (D) and matched case

(E), the same information is also presented for the Missing

Data, Equivalent Samples condition (C), a condition that is

equivalent to matching on an infallible criterion. As noted

earlier, it is the results of this latter condition that the

matching process is employed to achieve.

Insert Table 7 about here

Looking at the columns for item difficulty, we see that the

average difficulty for the Missing Data, Matched Samples

condition is .07 higher than the average difficulty for the

Missing Data, Unequal Samples condition. In addition, there is

little, if any, difference between the average difficulties for

the other sections involved in the concurrent calibration.

Differences between the averages of other item parameters are

also small. These results replicate the Lawrence and Dorans

(1988) results and support the Lewis hypothesis.

Perhaps even more notable, however, is the comparison of

these two conditions with the "ideal" condition: Missing Data,

Equivalent Samples. For the test forms and equating sections
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not affected by the sample selection, there are few, if any,

differences among the averages of the item parameter estimates

across all three conditions. There is a change of only .01 in

average item difficulty for OLD2, compared to the ideal

condition, when there are true differences in ability. Matching

samples on fallible criteria produces a much larger difference

(.08) in average estimated difficulty. This suggests that such

matching may introduce undesirable distortions in estimated item

difficulties.

A more detailed comparison of results from the unequal

samples and matched samples conditions is shown in Figure 6.

Each page of this multipage figure shows a scatterplot (top) and

residuals (bottom) for the item parameter estimates for a

particular test section. In all scatterplots, the matched

condition results are on the vertical axis and the random-and-

unequal sample condition results are on the horizontal axis.

All residual plots are formed by subtracting the unequal sample

condition results from the matched sample condition results.

Insert Figure 6 about here
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For the New form (NEW), EQ1, and OLD1, there are only a few

items whose results do not lie exactly on the 45-degree line.

These items are different because in one run their c's were

fixed at COMO (see Wingersky, Barton, & Lord, 1982) and in the

other run they were not. For EQ2, there is more scatter of the

estimates around the 45-degree line, and the plot of item

discriminations shows that the discriminations are slightly

higher in the random condition, confirming the differences

between the means in Table 1. For OLD2, there is even more

scatter for all three item parameter estimates than seen for

EQ2. The plot of the item difficulties shows that the estimates

under the matched condition are generally slightly, but

systematically, higher for almost all item difficulties.

To examine the same type of information for real data, as

opposed to the simulated data developed for this study, a

particular SAT-Verbal form studied by Lawrence and Dorans (1988)

was selected. The form was chosen because the reported

differences showed that the average ability for the lower

ability sample taking one old form was about 1/3 of a standard

deviation below that for the new form. This resembles the

simulated conditions of the current study.

32
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Figure 7 shows the information for this form analogous to

that shown for the simulated data in Figure 6. The calibration

design for the chosen form was exactly the same as in the

simulation, but in contrast to the simulation, each test form

and equating section for the real-data calibration differed from

each other. As in the simulated results, item parameter

estimates for NEW, EQ1 and OLD1 were not affected by the sample

selection. Estimates for EQ2 and OLD2 were affected, and in

much the same way as the simulated results. The item difficulty

estimates for OLD2 are slightly, but systematically, higher in

the matched condition. These results, as do the simulation

results, provide further evidence in support of the Lewis

hypothesis.

Insert Figure 7 about here

Table 7 and Figures 6 and 7 suggest that if IRT equating is

to be used, then the matching of samples based on a fallible

criterion is not recommended. This selection produces results

that differ more from the ideal condition of selection on an

infallible criterion than do the results based on the use of

samples that are unequal in true ability. At the same time,
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this selection introduces an undesirable bias in the estimates

of item difficulty for the old form.

Equating Results for All Methods and All Ccnditions

Table 8 shows the projected scaled score means and standard

deviations for all individual equatings performed and for the

averages. Figure 8 plots the projected scaled score means for

the individual equatings (not the averages). The left side of

this figure gives the results of the equatings of the New Form

to Old Form 1, and the right side gives the results for the

equatings of the New Form to Old Form 2. The experimental

conditions are positioned along the horizontal axis. The

projected scaled score means are read from the vertical axis.

For each experimental condition, the projected scaled score

means are labeled with a T for Tucker, L for Levine, E for

Equipercentile, and I for IRT equating. The points for a

particular equating method are connected with straight lines to

make the plots easier to read.

Insert Table 8 and Figure 8 about here

3 4
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Both Table 8 and Figure 8 show that the differences among

projected mean scaled scores are generally small, but with a few

exceptions to be discussed later. This is not surprising since

all test forms have the same true item parameters in this

simulation; only samples have been changed. Thus equating the

NEW to OLD1 or to OLD2 is equivalent to equating a test to

itself, using identical anchor test sections. The importance of

these small differences is not possible to judge since

approximate standard errors have not been developed for all

methods (i.e., the IRT standard errors have not been developed

to date).

To evaluate these results, it seem useful to compare the

results of each equating method across experimental conditions

to its own value in the "benchmark" condition. This condition,

shown to the far left of each subplot, is the one in which data

are complete for each simulee and all samples of simulees are

drawn from the same ability distribution.

New Form Equated to Old Form 1

Conventional equating methods for equating NEW to OLD1 are

not affected by different samples taking OLD2 since these

samples do not enter into the equating. Thus, the equated means

for the conventional methods are identical for conditions
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involving complete data (A and B), and also identical, but

different, for conditions involving missing data (C, D, and E).

In contrast, since all test forms are calibrated concurrently,

IRT equating results vary slightly across conditions in which

the samples taking the other old form vary.

All equating methods are affected by the presence of

missing data in both the NEW and OLD1 samples (conditions C vs.

A and conditions D vs. B), although IRT equating is less

affected than conventional methods. The kind of missing data

modeled here, in which both the number of items reached and

omitted are functions of ability, tends to make all simulees

appear slightly less able and the tests to appear slightly

harder. In the IRT case, the new form is harder than the old

form when there is complete data (see Table 2 or Table 3). When

missing data is introduced, both test forms are harder, but

differentially so, and the old form becomes even easier than the

new form (see Table 4 or Table 5). Thus the new form scaled

score mean is raised by introducing missing data.

For the IRT equatings, all other effects are not

explainable on the basis of means of estimated item parameters,

but may be explainable by slight changes in the distributions of

3C
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item parameter estimates due to what is most likely sampling

variability.

If comparison with respective benchmark conditions is a

reasonable criteria, then IRT shows the least variation across

conditions studied.

New Form Equated to Old Form 2

These equatings, shown in the right-hand subplot of Figure

8, are the interesting ones -- by design they are most affected

by the experimental conditions. As seen in Figure 8 and also in

Table 8, the benchmark conditions for all equating methods are

different from the benchmark conditions for the equating of

NEW to OLD1. The IRT benchmark conditions are most different

over two scaled score points; the Equipercentile benchmark

conditions are least different -- less than a tenth of a scaled

score point.

Perhaps the most striking aspect of these equatings is the

sensitivity of observed-score equating methods to differences in

true sample ability. The introduction of unequal samples,

whether in the complete data situation (conditions B and A) or

in the missing data conditions (conditions D and C) has the

largest impact on Tucker equating, and less but substantial
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impact on Equipercentile equating. Of the remaining two

methods, Levine equating is more affected than the IRT equating.

As in the OLD1 equntings, the introduction of missing data

(conditions C vs. A and conditions D vs. B) also impacts the

projected means, making them slightly higher for all equating

methods. The explanation for the IRT results offered previously

for the equating of NEW to OLD1 seems to hold here also.

The Lewis hypothesis is again demonstrated by the slight

decrease in the projected mean for IRT equating from the random-

and-unequal sample condition (D) to the matched sample condition

(E). Tucker and Levine equatings are identical, as they must

be, under matched sampling conditions, and the Equipercentile

equating is close to them.

If the benchmark condition is used as a criterion, it seems

clear that IRT equating varies least across all experimental

conditions. If the Missing Data, Equivalent Samples condition

(C) is a more practical criterion, in other missing data

conditions (D and E), all equating methods except Tucker come

closer to this criterion when random-and-unequal samples are

used than when matched samples are used. The matching process

appears to improve the Tucker method, while making the other

methods worse.

3S
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These results suggest that if Levine, Equipercentile, or

IRT equatings are to be used, more reasonable results are

obtained using random-and-unequal samples. If Tucker equating

is to be used, better results are obtained with matched samples

than with random-and-unequal samples. However, if the decision

concerning the choice of equating procedure is to be made after

the sampling decision, then these results suggest that it is

better to use the random-and-unequal sampling that typically

occurs in SAT equating situations, and never select the Tucker

method.

CONCLUSIONS

The conclusions reported in this study must be considered

tentative since they are based on a single sequence of

simulations, and will remain tentative until they are replicated

by other studies. Further, the results should be examined from

the viewpoint that response data were generated according to the

3-PL model, with some specific model violations introduced to

incorporate missing data. These circumstances may favor the 3-

PL IRT equating results. In addition, it is not possible to

draw definitive conclusions about the importance of the equating

differences until some other study produces estimates of

standard errors for all equating methods studied.
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With the above in mind, the following tentative conclusions

may be offered based on the results of this study:

1. If IRT true-score equating procedures are to be

employed, matching of samples based on a fallible

criterion, such as an anchor test observed-score

distribution, is not recommended. This selection

produces results that differ more from the ideal

condition of selection on an infallible criterion than

do the results based on the use of samples of unequal

ability. Such selection also introduces an undesirable

bias in the estimates of item difficulty for the old

form.

2. If Levine equally reliable or Equipercentile through an

anchor test observed-score equating procedures are to

be employed, more reasonable results are also obtained

from use of samples of unequal ability and matching is

not recommended. Only for Tucker equating are better

results obtained when samples are matched on a fallible

criterion.

Finally, it is reasonable to ask how the results of this

study compare to the real data results observed in the Lawrence

and Dorans (1988) study. Their study involved looking at only
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conditions D and E of the equating of NEW to OLD2 in Figure 8;

they were, however, able to observe the results for a number of

different forms. The results of this study for conditions D and

E of the equating of NEW to OLD2 are not totally inconsistent

(-4

with the Lawrence' iftid Dorans findings for SAT-Verbal, and, in

fact, the results reported in this study closely correspond to

the results for one of the forms studied by Lawrence and Dorans.

The results from this study are somewhat inconsistent with the

Lawrence and Dorans findings for SAT-Mathematical, where little

variation was found across the Tucker results for conditions D

and E of the equating of NEW to OLD2. Further investigations

are presently being planned to attempt to reconcile the

inconsistency of equating results that appear to exist for the

Tucker method for SAT-Verbal and SAT-Mathematical.
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Table 8: Projected Scaled Score Means and Standard Deviations
for All Equating Methods and All Experimental Conditions

Condi-
tion

Tucker

NEW to OLD1 NEW to OLD2 Average

Mean S.D. Mean S.D. Mean S.D.

Benchmark A 420.72 112.39 421.22 108.52 420.96 110.44

Compdata,uneq 420.72 112.39 414.90 106.31 417.80 109.34

Missdata,equal 422.10 111.14 421.71 109.14 421.89 110.13

Missdata,uneq 422.10 111.14 415.35 107.92 418.71 109.07

Missdata,matched 422.10 111.14 417.95 108.92 420.02 110.02

Condi-
tion

Levine

NEW to OLD1 NEW to OLD2 Average

Mean S.D. Mean S.D. Mean S.D.

Benchmark A 420.89 112.30 420.79 107.55 420.83 109.91

Compdata,uneq 420.89 112.30 420.06 106.97 420.47 109.62

Missdata,equal 422.31 110.87 421.15 108.42 421.73 109.63

Missdata,uneq 422.31 110.87 420.42 108.01 421.36 109.43

Missdata,matched E 422.31 110.87 417.95 108.92 420.13 109.88

Condi-
tion

Equipercentile

NEW to OLD1 NEW to OLD2 Average

Mean S.D. Mean S.D. Mean S.D.

Benchmark A 420.74 112.77 420.82 107.85 420.81 110.24

Compdata,uneq 420.74 112.77 418.76 107.39 419.78 110.00

Missdata,equal 422.00 110.67 421.05 108.24 421.52 109.38

Missdata,uneq 422.00 110.67 419.04 108.02 420.52 109.28

Missdata,matched E 422.00 110,67 417.82 108.93 419.90 109.72

IRT

Condi- NEW to OLD1 NEW to OLD2 Average

tion Mean S.D. Mean S.D. Mean S.D.

Benchmark A 422.12 111.10 419.79 109.13 420.95 110.12

Compdata,uneq 422.35 110.99 419.70 109.56 420.76 110.27

Missdata,equal 422.52 110.37 420.46 108.94 421.49 109.65

Missdata,uneq 422.77 110.17 420.12 109.90 421.45 110.04

Missdata,matched 422.50 110.33 419.07 108.68 420.79 109.50
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Figure 1. Data collection design for equating the SAT

Total Test or Anchor Test

NEW EQ1 E02 OLD1 OLD2

Sample 1 X X

Sample 2 X X

Sample 3 X X

Sample 4 X X

Notes: An X denotes the specific total test and anchor
test taken by a specific sample.

Samples 1 and 2 are random samples from the same total

group.

Samples 1 and 3 are samples from different total groups
that are similar in ability.

Samples 2 and 4 are samples from different total groups
that are dissimilar in ability.
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Equating Procedures

Figure 5. For selected items, the proportion of omits in
true response strings, separately by quintiles for right/wrong
modeled responses.
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Equating Procedures
Figure 5, continued. For selected items, the proportioa of

omits in true response strings, separately by quintiles for
right/wrong modeled responses.
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Figure 5, continued. For selected items
omits in true response strings, separately by
right/wrong modeled responses.
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Equating Procedures
Figure 5, continued. For selected items, the proportion of

omits in true response strings, separately by quintiles for 56
right/wrong modeled responses.
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Equating Procedures

Figure 5, continued. For selected items, the proportion of

omits in true response strings, separately by quintiles for 57

right/wrong modeled responses.
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Equating Procedures
Figure 5, continued. For selected items, the proportion of

omits in true response strings, separately by quintiles for 58
right/wrong modeled responses.
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Figure 5, continued. For selected items, the proportion of
omits in true response strings, separately by quintiles for 59
right/wrong modeled responses.
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Equating Procedures
Figure 5, continued. For selected items, the proportion ofomits in true response strings, separately by quintiles forright/wrong modeled responses.
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4: 

Complete data 
equivalent samples 
(Benchmark) 

Complete data 
unequal samples 

Missing data 
equivalent samples 

Missing data 
unequal samples 
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